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ABSTRACT .

The double-peripheral model is discussed and applied to four
pior-nucleon reactions producing respectively a 7'[0, 7'c+, W, and
?o. The results for the first two reactions are compared with a
recent experiment at 4 GeV/c, and some additional predictions are

given.
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The second sentence of the second paragraph of page 18
should read as follows :

_ "For the first, we get the curve of Fig. 3b, and for the latter,

we get a contribution......"
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1. INTRODUCTION

For inelastic processes at energies sufficiently above threshold, the
peripheral model 1) appears to be a useful description. Elaborating on this,
imati, Fubini, and Stanghellini developed the multiperipheral model 2), which they
were able to solve in the asymptotic region of very high energies. The predictions
of this model are in qualitative agreement with the available information from the

highest accelerator energies as well as cosmic ray energies.

The double~peripheral model is the multiperipheral model, specialized
to the exchange of exactly two virtual mesons. This is indicated by the graphs
of Fig. 1. The "order of peripheralism" equasls the number of virtual mesons in
the graph. Among the virtual mesons, we shall allow not only pions, but also
resonances like Q and () , and also the "vacuum (Pomeranchuk) frajectory".

The outgoing particles in Fig., 1 need not be stable, but may be
resonances and even more general groups of particles. The only restriction is
that the "invariant mass" of each group should be low enough to exclude additional
peripheral structure within the group, since such interactions are in fact taken
care of by a multiperipheral graph of the next higher order.

The double-peripheral graphs are calculated from Feymman's rules, the
main additional feature being "form factors" of the momentum transfers. In
section 2 we discuss our choice of form factors and coupling constants. In
section 3 we develop the detailed expressions fqr the matrix elements and cross-

sections for ’the following reactions :

7'C'+P»—~b E‘fﬁotp N )

n'+P —~ T+ +n @
T7+p —> T+ WO*P | (3)
TT+p — T+ §°+P (4)

Section 4 contains a comparison of our principal results with available experimental
data on reactions (1) and (2), whereas for reactions (3) and (4), we restrict our - .
discussion to qualitative remarks. .
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2. . .

2. FORM FACTORS AND COUPLING CONSTANTS

Our doublc.hpenpheral graphs are calculated in lowest order perturbation
theory, according to Feynman's rules » with real coupl:mg constants at the vertices.
Two additional rules appea.r to be necessary, owever,

(1)  esth meson i:ropégaior includes a "universal form factor" F(t), which is
taken as ’ .

F(t)= Flo).¢ 55t, [t] = GeV? s

(ii) whenever possible, a "vacuum state" is admitted among the virtual particles,
with a "propagator" '

2.5t .
e [t]= GeV2: . ®
- , B o B
Lot us first discuss rule (i). The form factor (5) has been found to be useful
for both pion and vector meson exchange in several Kfp interactions 3). . While

it is possible that the pion form factor drops off somewhat faster than (5) at
small values of ~t, such a difference would have little, if any, influence on
our quantitative calculations (cf. section 4) for reactions (1) and (2). -

, The form factor is understood to be normalized to 1 at the particle pole.
Thus for pions, F(0) = o 2* 5/‘ = 0.954. For heavier particles, with msss m,
we ghall still require F(m ) =1, but not necessarily F(0) = ™2 5w , since
the exponential behaviour is in fact a rough estimate for small negative values
of t, rather than a precision fit which could be extrapolated far away from
the physical region. '

R.ﬂ.e (ii) is adopted to represent the effects:of diffraction scattering,
implying a large imaginary amplitude at small angles. '
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Again, the specific form (6) is more a guess than a proven statement,
the exponent being borrowed from (5) and the purely real form (1eading to a purely
imaginary amplitude) being the simplest possible choice.

One more comment about the form factor. In a field theoretical treatment,
such a factor would arise from the vertex functions as well as from modifications

~ of the particle propagators,

8591

F(t) = Frenext1 () Foop.(t)- Freix28)

For the single peripheral model, the "universal" form (5) implies that
all three functions entering (7) are independent of the type of particles (pions,
nucleons, resonances) that participate. In the double-peripheral model, there is
always ohé vertex where two virtual mesons join. The corresponding vertex function
is a function of two momentum transfers, and the form (5) is possible only if

VCV{‘CX (i t) = VCNLC {f) FVCI{C)( (‘é,) (8)

A comparison of t distributions for different values of t' would provide a
direct test of (8).

In section 4 we shall use the following coupling constants :

G}"N G'S:m“
T4rx /ﬂf 4 =2.76

(corresponding to a ? decay width of one pion mass), and

2
4
%.ff = 0.35 )
4c
when the ft-f‘\) vertex is taken in the form



4s

/%, Gﬁfw'é/w/h-f/z/f)e[“") Ealp) Eg (@),

and [, =8MeV. Finally the NV coupling will be taken as a pure vector

8591

co,uplihg with an "effective strength"
’ R
FZ(O . ._..-G""” = .

The value found by Scotti and Wong 5)

)
Y

Our value of the effective strength will serve as an order of magnitude estimaie
only. ‘ ‘ '

, taking F, (%) =1, is

=Z.77



5.

3. . MATRIX ELEMENTS AND CROSS-SECTIONS
~ All reactions discussed are of the form

Per — P +A+8

where we always have an incident proton and pion, P! represents the outgoing
nucleon (either proton or neutron), and A and B represent two outgoing bosons.
We shall use the same symbols for the associated four-momenta, except for the
incident pion which has four-momentum denoted by XK. In the c.m. frame of the

AB oystem, these quantities have the following components

P={(Ep), €=1pp

K =6, K), &4 =1k 3 )
A=, a), Ea=Vatrm:
B=(&, b), Ev=1b6m

The{double~peripheral graphw—efpondipg j;m are of the two types

‘appearing in Fig. 2, where X, X1, X2 represent the exchanged objects. The

associated four-momentum transfers are respectively

AG = K" A | o)
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"~ Thus

6.

Note also that the bracket (X, Xj)- identifies the graph for a particular channel.
We shall use it as a reference symbol.

We employ the same metric as Jauch and Rohrlich 6). Our matrix element
is lorentz invariant and is related to the non~invariant Mg), for which Jauch
and Rohrlich provide the recipe, by

% (27"} /EEE/?E EL)/ %{(3)_

The cross-section is given by

0= g sy g [ [0 [0 5 (PP

’ 1 / ]2.
- E . 11
where Z denotes the sum over both initial and final spins.

There are in these channels nine flnal state momentum variabvles. We
eliminate four, namely Ea and b, by energy-momentum conservation so that
ot ) ) .

U-(Qr)l P(—J.ﬁ dmﬁfd —;,-- |45 |2 (12)

where p is the magnitude of the incident momentum in the incident over-all c.m.

system, 8 = - (P+K)2, and 8' = - (A+B) . The polar angle * and the azimuthal

anglo are the angles of g in the AB c.m. system with polar axis k.
gis the scattering angle between the incident pion and the outgoing boson

A. Finally EP is the TreimanYangangle7) and we take ?=§ along the
direction k x (p+p').



Of the remaining five final state variables, the azimuthal angle of the
outgoing nucleon with respect to the incident proton in the over-all c.m. system
is redundant. We choose s', t = -~ A2, codJ; and (p, for tho intependent
final state variables, and therefore we transform

fa/3£, 210*[— jd{ ds’ (13)

It follows that

. a -
5% [dtads dend = s M)z oo

vhere the bar over the spin summed square of the matrix elelnex;t glenotes the average

g =

over the Treiman-Yang angle 60 o The distributions in each ggg of the remaining
variables, coiy st, and t, were obtained by means of the 7090 computer at
CERN. We give the cod) distributions for reactions (1) and (2) in Fig. 3.

We proceed with the discussion of the matrix element for the reaction (1).
Referring to Fig. 2 with A as the outgoing negatively charged pion, there are
four contributing graphs. These graphs are (77,0 vac), (7%°, 57-), (w, ?o),

(w, ? ), where vac denotes the vacuum exchange Among these graphs, only the
last two interfere. The corresponding contributions to Mﬁ are respectively
2

o .—Gnvac G Frlt) . 2.5¢
ac) = Zmeae, T Lalt s
M (Tvee) = 222 et C R
> M ‘75'@')/5 Us (p) (15)
2
M(roe7) = s Gan, F(;) ity (ke 8)

“m T t,-md

v rnY [,
x(a/‘+é_‘;_£2&)(A+A)VMMS:(F'){5 Us (p) (16)
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0} G”'" er w::w Ax '

Fo(t 4) v R,
[t T (K A)/‘ i r-"‘(K B),Ab]Mu (P)J Us(p)
(17)
vhere t, .--A2 -_--A2, and 6/"’“‘ is the Levi-Cevita alt;méting

symbol. The factor s'/so in (15) is the spin factor of the vacuum trajectory

at t=0,

When we square the amplitudes (15) and (16) and sum over all spins, we

- obtain res‘pect‘iv‘ely

ZMW 2 (G""“) G, (0 T RLE)

m’ 4m (t/u‘)2 2/ (18)

and

- 2 . ‘;n' N . ) ::-:: z
2 ML(" ) ('frr) '%r (?/{f)) (§ r{f) (‘:%)(Zflftf*zf?“)z(‘19)-

In order to.discugs (17) and the other reactions it is convenient to introduce the
symbols

Ggﬂn‘ 6’/{9(» G'a.w Fl—o('t) 'rg ('t)
V ﬁ/"‘f‘rr Von t- ik t m’-

e = /_—MUS'(P)J Us (p) .  ‘}(20)
U o= P+P
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In terms of 4 and v we have
xk cr A A
Z = 3)0-—* i”z (A 8%- v v_cr) (21)
We may now express (17) in the more concise form
M (05,¢°) + M, p7) = /?Z[V det(k,A,b,e)+ eWKBA,e))
| (22)
Noting that A+B = K+/| we obtain, with the aid of (21)
2| Mlwge)+ Ml / 2(v-1) [ LQHQ-v)? ]
(23)

T
vhen Q) = E,\ v KfA A « In the AB c.m. system, Q has the components

(o, Va? k X _) Recalling that the Treiman-Yang angle assumes the value —72-C

along the direction k X ¥, we have finally

T Mgl )] = § Sy G G Fot)
/ {“"fb)//(w"fj} L Lfg# L”;‘ ¥ (t m&)*

Felty) B(tz
><L1_m; ]( Q% gin - (24)

{5 R* §irs g’-f-w:;(f[ (2% 5o ptag- ¢)%+ % ‘/JkM]g

The sum of (18), (19), and (24), with sin Lf and cos (f replaced by 1/2 is
inserted into (14) for l
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We 2o on to the discussion of the matrix element for reaction (2).

The final nucleon is now a neutron and B is a positively charged pion. The only

- contributing graphs are (7L+, vac) and (TC+ ’ ?o). ‘These graphs give precisely

the same contribﬁtions’és' the first two graphs of reaction (1), except for an addi-
tional factor {—' in the matrix element, due to the relation G = PG
The result is

| Z’M{’ 2671.«/ F_,,-[t) (‘%)X

8591

Y (t 1) 2 -
NVGC) ’l( ) F {t, ( ‘" _2.2 2 25
e (2) g_.u_ L st @
l
Before proceeding with the discussion of reactions (3) and (4), we discuss
the polarization effects of vector meson product:.on. The’ production and decay

 f(Ghe

amplitudes are of the form

/i/(,f:rbd = ﬂf,m; (A) , (26)

./{/(-decaua = M D, (A) @
where & (4) is the polarization vector, and 2% = 1. In the rest system of the
decaying vector meson, D) has the components (0, fi), where i is a wnit
vector. In the case of @ decay, fi is directed aloné the decay axis. In the
case of (1) decay, i is normal to the decay plane. In either event DA =0,
whereby |

Z M rod '/Mc(ec,q,D - /{ ) Mprod . D,\ (28)

Sfu n
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In the ‘A 7rest frame Mprod‘Do\ :M_T)rod'ﬁ and the distribution for #i° is obtained

by inserting 'M‘prod'ﬁ for M., in (14), and the spin summation is replaced by -

taking three times the average over the solid angle () ( (.75', ) of # with respect
to -k-A' The vector _lgA
frame, and [5 and ™ are the polar and szimuthal angles of fi with respect

is the momentum of the incident pion in the A rest

to k,, In terms of invariants

= g LB L) sty

Referring again to Fig. 2, for the reaction (3), A is the (. The
contributing graphs are (T°, ?-), (r°, ?o), (°, ?-) and (©°, vac). Only
the first two graphs interfere, and we discuss these first. The corresponding

matrix element is

M(f,g')-k/ﬂ(ir:goy: (U,-U;_)-Z d’e»F(A,D)A) Na) X
X M l};, (PI)JS US [F)

(29)

where

UJ

._—_AGS’"'T ) Gngw.- G’-nw‘ Fr (t) 3 Fg({j) “(30)
[ /uﬂ—f} ﬁﬁr {:—/v‘cZ tj—mg" ’

Using energy-momentum conservation we have

detZ(A)D) A) AQ) = det z(A) D,A, K) = (D,Q)Z - (31)



120 ] ’ .

vhere Q  was previously defined Eollowing (23_)_7. In the () rest frame, the
components of Q are again simple, namely (0, m,,-k k, x An)’ where A

the three.vector part of A in this system. We fix the co-ordinates so that o{
assumes the value %—r in the direction l‘-A X AA’ We also have the relation

V"'QEAXAA-:{?EXE« --(32)

so that

o .- 0.0 7-_ er'rrm G‘ Fr-rz(t)
> | M(ms ) Mnse)| " = 4 =Z ‘ﬁ; J;ﬁ’(t_fz)zx

F(é) r(t . ~ N ?.

g e 2

XL’M{ P T L) siia s sip ot
] Z g

We next consider the contributions from the (W, ?-) graph, namely

Moo, )= S, Gy Bt &) L det (RDAK)

).
e /ﬁ lgr £-ri 1, -
A2 6cr/\ v
2
lengthy expressions. We find it convenient to introduce a number of additional
syabols to shorten them. The first among these is L) = €puyo * 47R7K
which in the (O rest frame has the components (0, m, R, X k ), where R

. w'=p =A
is the three-vector component of R above. Then we have

where R = e\ A /.ABV . This matrix element involves rather

det (R, DA K) = nel = m,k gmﬁ(&m s, +Kp4 k)

(35)
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If we average over X , use (21), and the relation

o €71 = g3 (g98 - g140)

RGTg) B - £

x {-t[kia" - b, (o 8,07l x W, 1]

(37)

In (37) we have introduced the symbol
" ) :
§7= L) g (Bt e it )

and the EA component of Wg = 6(7.)\/M, - Vv )‘A/LABV, in the rest system of

the (3. The expression (37) displays the pure sin’f3 dlstnbutlon contributed

by this graph. We have from (32) the expression for mw(__ X A ) in terms

of the AB c.m. varigbles. The term.not easily transformed is (__A X &)2 We

write this in the form S )
(.k/\ XL\/A)Q = k: W2+ k; (Wo?,;, - W?,ZA.)

(38)

Using (36) we get

ki W= k; (£-4M) 8- 15 (-B)*

(39)



14.

and the remainder is
z [, ,2 2
kA(WoA"W'ZA):' *t. U,f\ UijéA)z (40)

After some manipulations we obtain the result
Z r t 2 2
(ka x ba)® {l‘ (L U""”f) 5 KUts' i S”}Q s}

+ Z(AZ v2di- 9 k:_tvo‘gD:,(qu‘talS‘:"\ll?)’/ZS&"\&w:)Ef (41)

where
= ({;‘ Lsz-t %z)/z
(42)

o 1 2 N "
V- = é_{?-' (2“ A /*24-5 t)

We note thét the coefficient of the cos(:)o term in (41) is always positive
(t is negative)_. Upon taking the average over (57 y We obtain finally ‘

o 2
d w o1 . {Gﬁ w) Gov F ({) Fo(4) sm'f
'[: %cz IM( ,S’” Lﬂt/yﬂ}l b (t )" (E-mi 4 x

X{'Qmi}tk:éq-ktt,kzazs'smlﬁ + [m?- kit (Ul t ) Ufs'] atsm)
C+ Mg kz ‘g 5 . (43)
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There appears to be no way to make this rather tedious expression much more
transparent. . This is because both virtual mesons and the outgoing meson carry

spin.

Por this reaction there remains only the graph (CO, vac). Apart from
factors: wh:.ch require no further discussion, the spin summed square of the matrix

element is proportional to

X o=k [Er(manl-(8aA2]

It M({3, vac) were considered alone, then due to the dominance of
small A s the relevant direction in the fi distribution X would be along the
average nucleon momentum. However, for the other contribution previously discussed,

the angle (Z is more suitable. We average over (X and get

n '
goxom = —tha s Lot | (ko afee (kax84)*]
T [l - 2 (s -8, ]

Equation (45) exhibits the contribution to the /S distribution from this graph,
and is the only part containing terms other than pure sin /3 We now average
over F also and get

__/_'.-——— : - - _2_ 2 (S"Z/}“{q)l at 2 2
ek JOREIN = -t e e S - sl ety

(46)

([aeg i o]’

VL, sk 5@({

3 ?) mw

We observe again, that the coefficient of the cos(j) {erm is never negative.
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We consider fmally the reaction (4). The particle A is a SD The
contributing graphs are ( S? y L), (vac, ™), and (vac, ? °). Ve state only
the results

7_ ot FElL) . | 2y g4 2
3 | mlgr)|= 3Gz »’J,fn 9 1 (G- 6

N = t(E-1Meusiniy) a5t - t 28"

-2 v,v°(<5‘ita’°sw§) “a s W

(am)

N

3 elune) e s ) = G ot o (£ (upr=t)x
oo:ﬁ wvac Fp (1)) G vac_Felty)
/ﬁ*[i‘? € kp + f e HJ

835 sind -lan/ibovo(

2gm; |
L [ , Y,
Tk, thy+ (‘ i)t *““” ‘9] (@)

We note that the coefficient of cos (f is never negative and, that after taking
the average over O\ , the distribution is pure cos ﬂ '
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4. COMPARISON WITH EXPERIMENT

In the present literature, few accurate experiments of the type we need,
on inelastic JLp collisions above 4 GeV/c are reported. In a large portion of
all events, the outgoing particles can be grouped into one resonance plus one
particle, or into two resonances. Such events are candidates for the single-
peripheral model. With increasing experimental accuracy, the realm of the multi-
meson resonances appears to expand, thereby lmltlng the regions where the double~
peripheral model might apply. In addition, there appears to be a non-peripheral
g—g, the background
manifests itself as a long tail to the sharp peak near t = O.

baquround among the remaining events. In the distribution

At present, the best reactions for the double-peripheral model are (1)
and (2). They have recently been ana‘lyzed at 4 GeV/e 8), in a way which is suitable
for comparison with the double-peripheral model. No 7C-N resonances appear to
be present, and only events with -t << 15 /142 are taken. In order to exclude the
observed ? and fo resonances, We require My, =8’ > 1.175 GeV2 for
reaction (1), and s' > 1.9 GeV> for reaction (2).

The resulting cos 7} distributions are shown in Fig. 3. In Fig. 3a,
the theoretical curve is normalized to the number of events in the forward and
backward peaks. The curve of Fig. b contains no free parameters.  In discussing
the theoretical curves, we first notice that ‘the conftribﬁtion of the (CJ, f)
graphs, Eq. (24), to reaction (1) is 0.016 mb only (using the coupling constants
of section 2). The differential cross-section of these graphs is symmetric around
cos U = 0, with peaks at !cos&! ~ O.‘85. T'his‘ means that (J exchange contri-
butes barely 15% to the backward peak, and even less to the forward peak of
Fig. 3a. We therefore omitted the () exchange altogether.

The forward peak in Fig. 3a is due to the ( n? , vac) oxchange,
Eq. (18). Its shape seems to substantiate our conjecture regarding the exponemtial
(6). From the total number of events in the forward peak, we find

G;'vac /'7’7C.So = .5—. Ll‘/GeVZ,



i8.

eraph (77°, ?-) finally gives the smaller backward peak. Application
of (19) to the ovents in that peak gives sz (0) = 0.18 (extrapolation of the
* exponential law (5) gives FZT (0) = exp(-Sm%) = 0,06).

Having fixed our normalization in reaction (1), we can compute both
differential and total cross-sections for reaction (2). For the first, we get a
contribution of 0.10 mb from (7™, vac) and 0.04 mb fram (7™, P°), suming
up to O.14 mb, in good agreement with experiment.

At 16 GeV/c pion momentum 9), it has been suggested that the (%, vac)

graph should explain the large forward peak of reaction (2). This is in accord with
our analysis at 4 GeV/c. 1In principle, we could apply our formulae to calculate
the 37 exchange contribution at 16 GeV/c. But if we regard our form factors

(5) and (6) only as a first approximation which suppresses the energy dependence 10),

such an extrapolation would exceed the scope of the model.

. Next, we turn to reaotion (3), the cross-section for which is obtained
from Eqs. (33), (43), (46). Again, we have to omit from the experimentsl data
all events in which the final pion is in resonance either with the final proton
or with the (0. Unfortunately, due to the recently discovered JN-(JO resonance 11),

only a few events remain. We therefore give just the main qualitativé results

(A) the cos )9 distribution exhibits peaks at forward and at backward angles.
This agrees with the available experimental data 12). The forward peak is
due to graphs (29, P7) amd (w, 97), the backward pesk is due to

(n’oy ?O) and (wv Vac)°

(B) since the vacuum exchange ({5, vac) is the only one having cosz/g_ terms,
all ovents at cos U > 0 should have a pure sin2 ﬂ distribution.

(C) from BEqs. (41), (46) it follows that the distribution in the Treiman-Yang -
angle (f is larger at (F:O than at $0=TC.

91
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Finally, for reaction (4), the double-peripheral model predicts, besides the usual
peaking at small %, a cos % distribution with a forward peak, due to the

- 0 -
graphs (vae, 777), (39, A7), and (SJO,CJ), and a backward peak, due to

(vac, ?o).

It is interesting to notice that in the primitive formulation of the
peripheral model, graph (vac, 7T) belonged to two different processes, namely
(a) pion diffraction dissociation (from the point of view of vacuum exchange),
and (b) peripheral ¢ production with off-shell JL-N scattering (from the
point of view of pion exchange). Such duplication does not occur in the double-
peripheral model.
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FIGURE CAPTIONS

Peripheral graphs @

(a) single peripheral,

(v) double peripheral,

(c¢) general multiperipheral.

The two inequivalent graphs of the double-peripheral model.
The letters deno*e the 4 momenta, the arguments /T, X, X, X,
denote the incident pion and exchanged particles respectively.

Distribution in cos 29, the angle between incident and outgoing
T in the c.m. system of the final pions, for JT p collisions
at 4 GeV/e, for -t < 15/«2 :

(a) Tp =1 T%, for s' > 1.175 Gevzo

() T p—=>" "y, for s' > 1.9 Gev2.

Theoretical curves from double integration of Eqs. (18) and (19),
experimental histogram from Ref. 8).
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FIG.-3b



